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FIRST-ORDER FRAMEWORKS FOR MANAGING MODELS IN

ENGINEERING OPTIMIZATION

NATALIA M. ALEXANDROV�, ROBERT MICHAEL LEWISy

Abstract

Approximation/model management optimization (AMMO) is a rigorous methodology for
attaining solutions of high-�delity optimization problems with minimal expense in high-�delity
function and derivative evaluation. First-order AMMO frameworks allow for a wide variety
of models and underlying optimization algorithms. Recent demonstrations with aerodynamic
optimization achieved three-fold savings in terms of high-�delity function and derivative evalua-
tion in the case of variable-resolution models and �ve-fold savings in the case of variable-�delity
physics models. The savings are problem dependent but certain trends are beginning to emerge.
We give an overview of the �rst-order frameworks, current computational results, and an idea
of the scope of the �rst-order framework applicability.
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1 Introduction

Computational models in science and engineering have progressed steadily in numerical accuracy
and physical �delity as computers have become more powerful. It is, arguably, to be expected that
computational models will grow in complexity to consume all computing power available at any
given moment. This makes the objectives of an analyst at computational odds with the objectives
of a designer. Given a set of design or control variables x, the analyst wishes to solve, as accurately
as possible, a disciplinary analysis equation (or a system of coupled disciplinary analysis equations,
in the case of multidisciplinary optimization [4, 38])

A(x; u(x)) = 0 (1)

for state variables u that describe the physical behavior of the system. System (1) is frequently an
expensive simulation, say, involving the solution of a set of di�erential equations, as in the case of
computing the 
ow around an airplane. The designer, on the other hand, wishes to solve a problem
of the form

minimize
x

f(x; u(x))

subject to h(x; u(x)) = 0
g(x; u(x))� 0
xl � x � xu;

(2)

where, given x, u(x) is determined from (1). Unfortunately, the use of high-�delity models, such
as those based on �ne computational meshes (high-resolution) or detailed physics (e.g., the Navier-
Stokes equations) at every iteration of an optimization procedure can be prohibitively expensive.
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The di�erence between the objectives of the analyst and the designer suggests that the designer
can be satis�ed with intermediate results of lower physical �delity, provided they lead to improved
designs. Only at the optimal solution must the design be consistent with the accurate, high-
�delity analysis. Given this distinction, researchers have long taken advantage of computational
approximations and models of varying accuracy in engineering design optimizationz. A survey on
the use of approximations in structural optimization can be found in [11], while recent overviews
of methods for aerodynamic analysis and optimization can be found in [25,34].

Until recently, procedures for using variable-�delity approximations and models in systematic
optimization had been largely based on heuristics, and convergence to a solution of the highest-
�delity optimal design problem had not been guaranteed, in general. With a few exceptions [10,
32, 35], the analysis of the use of approximations in optimization had focused on the question of
convergence to a solution of the approximate problem (e.g., [16, 24]). Due to improvements in
numerical modeling techniques and the increased availability of high-�delity analyses, optimization
with variable-�delity approximations has become a subject of much interest in the past few years
(e.g., [17, 23]).

This paper discusses an approach, approximation/model management optimization (AMMO),
that facilitates design optimization, using approximations and models in systematic ways. This
approach (previously presented in [2, 3, 6, 7, 29]) alleviates the expense of relying exclusively on
high-�delity models by incorporating well-established engineering approximation concepts with
ideas from nonlinear programming that ensure global convergence of the overall process and robust
performance. We focus here on an overview of our experience with the practical e�ectiveness of
the methods originally proposed in [2, 3, 29].

The paper is organized as follows. The next section looks at the ideas that underlie the �rst-
order AMMO methods. The following section brie
y describes the types of lower-�delity models
used and the consistency conditions we impose via corrections. The computational demonstrations
are then described. The paper concludes with lessons learned to date and some mention of ongoing
work.

2 First-order AMMO frameworks

In conventional optimization, the analysis (1) supplies the optimizer with objective and constraint
function and derivative information while the optimizer produces new values of the design vari-
ables x for re-analysis. The optimizer uses the function and derivative information to build local
approximations|usually �rst or second-order Taylor series. If evaluating the problem functions and
derivatives involves a simulation of high accuracy but high computational cost (e.g., the Navier-
Stokes equations), the repeated analyses required by the optimizer are expensive.

The basic idea of �rst-order model management is to replace the local Taylor series model in the
optimization subproblems with more general approximations or surrogates. These surrogates are
not arbitrary but satisfy certain �rst-order consistency conditions with respect to the high-�delity
model. The consistency conditions ensure that the overall optimization process based on the less
expensive models converges to a solution of the high-�delity optimization problem. We occasionally
have recourse to the expensive, high-�delity computations to verify that we are indeed generating
improved designs, and also to re-calibrate the lower-�delity model, based on a set of systematic
criteria.

zSome authors make distinctions in the use of the terms \models", \surrogates", and \approximations". For
simplicity, the terms are used interchangeably here.
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AMMO is based on the trust-region idea [31,33] in nonlinear programming, which can be
understood as an adaptive move limit strategy for improving the global behavior of optimization
algorithms based on local models. The trust-region methodology ensures the convergence of the
AMMO scheme to a solution of the higher-�delity problem by providing a measure of the surrogate's
predictive behavior, a criterion for updating the surrogate, and a systematic response to situations
in which an optimization phase performed using a surrogate gives either an incorrect or a poor
prediction of the higher-�delity model's actual behavior.

3 Consistency, convergence, and performance

The �rst-order model management idea can be used in conjunction with any gradient-based opti-
mization algorithm. See [5, 6] for a discussion of several such algorithms. Here we give an example
of an AMMO algorithm for bound constrained minimization.

Initialize xc, �c

Do until convergence:
Select model ac with ac(xc) = f(xc); rac(xc) = rf(xc)
Solve approximately for sc = x� xc:

minimize
s

ac(xc + s)

subject to xl � x � xu
k s k1 � �c

Compute �c �
f(xc)� f(xc + sc)

f(xc)� ac(xc + sc)
Accept sc if f(xc) > f(xc + sc); otherwise reject
Update �c

End do

The trust radius �c is updated according to the usual trust region practice [31]. The hope is
that the bulk of the computational expense will involve calculations based on the less expensive
approximation ac.

The �rst-order consistency conditions in this case require the approximation ac used in the
optimization subproblem to satisfy

ac(xc) = f(xc) (3)

rac(xc) = rf(xc): (4)

These ensure that ac mimics the local behavior of a Taylor series model around our current best
design xc. This, in turn, can be used to prove that the overall optimization process will converge
to a constrained stationary point of the high-�delity objective f [5].

A number of corrections can be used to easily ensure the conditions (3){(4). In the work
reported here, we use a correction technique called the �-correlation method, due to Chang et
al. [19]. Given the high-�delity objective fhi = f and any low-�delity approximation flo of the
objective fhi, we correct flo as follows. De�ne

�(x) =
fhi(x)

flo(x)

and construct
�c(x) = �(xc) +r�(xc)

T (x� xc):
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Then
ac(x) = �c(x)flo(x)

satis�es the consistency conditions (3){(4). For an alternative, additive correction scheme, see [30].
Convergence analysis of the resulting AMMO schemes relies on the consistency conditions and

standard assumptions for the convergence analysis of the underlying optimization algorithm [5].
For general problems, our current preferred AMMO scheme is based on sequential quadratic pro-
gramming.

Practical e�ciency of any particular AMMO scheme is a separate issue. The ability to transfer
the computational load onto the lower-�delity, cheaper computations, and thereby reduce the overall
computational cost, will depend on the predictive qualities of the surrogates. Note that even though
the surrogate models may not be good approximators of the higher-�delity models for the purposes
of analysis, they may possess suitable predictive properties for the purposes of optimization. That
is, an approximation may not capture all the important properties of a higher-�delity function, but
it may still produce a step that will lead to a satisfactory improvement in the merit function for
the higher-�delity problem. The computational demonstrations we present in Section 5 validate
the e�ectiveness of AMMO.

4 Origins of low-�delity models

There exist many possible ways to construct low-�delity models that we can then correct and
use inside the AMMO framework. Engineers have frequently turned to models based on �tting
surfaces to samples of high-�delity responses, such as classical polynomial response surface models,
splines, or, more recently, kriging models. Data-�tting approximations are attractive because they
rely directly on high-�delity data and do not, in general, require sensitivity information. These
models are also generally simple to construct. However, such models su�er from a number of well-
known limitations. These include the question of constructing an appropriate sampling scheme and
obtaining a su�cient sampling of the design space. These problems become worse as the number
of design variables increases|the so-called \curse of dimensionality". A more subtle di�culty in
constructing such models is discussed in Section 6.

Variable-�delity approximations that avoid the curse of dimensionality present an attractive
alternative to approximations based on data-�tting. We are considering a number of options.
Variable-accuracy models arise when a particular analysis can be converged to a user-speci�ed
tolerance. For instance, aerodynamic analysis codes are usually equipped with a user-speci�ed
convergence criterion. Another mechanism for managing variable-accuracy models can be found in
[18].

Variable-resolution models are computed by executing a single physical model on meshes of
varying degree of re�nement. Such models are frequently available in engineering optimization,
and we discuss one instance later. An elaboration of the fundamental AMMO idea leads to the
multigrid optimization scheme discussed in [30].

Finally, the most provocative choice of models is that of variable-�delity physics models. For
instance, in aerodynamics, the physical models range from linear potential models that describe
inviscid, irrotational, incompressible 
ow to Navier-Stokes equations for nonlinear viscous 
ow.
Our demonstrations include such a test case.
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5 Computational demonstrations

Because of the limitations of approximations based on data �tting discussed in the previous section,
we have focused on models that are independent of the number of variables: variable-resolution mod-
els and variable-�delity physics models. Independence of dimensionality is of special importance,
because in preliminary design, multidisciplinary applications of even a modest size may number a
few hundred variables [40, 41]. Aerodynamic shape optimization|one of the most computationally
intensive single-discipline problems of interest in aerospace design|is also of a dimensionality that
de�es current data-�tting approximation techniques.

As we discussed in the previous sections, �rst-order AMMO frameworks admit a wide variety
of models. Because current convergence results are of a global nature, extensive computational
experience has to be accumulated to validate the actual performance of AMMO, in terms of the
savings in high-�delity function and derivative evaluations. The demonstrations of this section are
aimed at accumulating such realistic computational experience.

Computational experiments with all AMMO frameworks and all models are done as follows.
The problems are solved with high-�delity function and derivative evaluations, using well-known
commercial optimization softwarex, such as NPSOL [21] and PORT [26], in order to obtain a baseline
number of function and derivative evaluations or iterations to �nd an optimum. The problems are
then solved in the AMMO framework under investigation.

Because it is di�cult or impossible to predict a priori the relative descent characteristics of a
model, the computational tests include cases when the relationship between the various levels of
models is favorable and the cases when it is not. Qualitatively, the relationship is favorable if the
lower-�delity model provides a long sequence of descent steps for the higher-�delity merit function
before the lower-�delity model has to be re-calibrated. The relationship is not favorable when the
lower-�delity model does not satisfactorily capture the trends in the high-�delity objective and
constraints on a signi�cant region of the feasible region. In fact, as we discuss later, the variable-
�delity physics demonstration has proved to be a test of the worst-case scenario. In the remainder
of this section, we present the numerical results of demonstration problems for two types of models.

5.1 Managing variable-resolution models

The use of a single physical model evaluated on meshes of a varying degree of re�nement appeared as
a �rst natural step toward managing variable-�delity models not based on data-�tting techniques.
As we discuss, in our computational demonstration of AMMO on two problems of aerodynamic
optimization, the suite of variable-resolution models was provided by the Euler equations solved on a
variety of meshes. The �ner the mesh, the higher the model �delity and computational expense. We
anticipated reasonable savings with model management because the responses of interest associated
with the variable-resolution models may be expected to have similar global trends.

Initially, the meshes constructed for the models were arbitrary meshes of di�erent size, with
no relation among them. While su�ciently �ne meshes should, in principle, produce consistent
functions, the meshes were too coarse to observe this e�ect. Instead, objectives and constraints
computed on unrelated meshes had wildly disparate trends and features, a phenomenon noted by
other investigators [14]. And, given the relative coarseness of the meshes, it was not even clear that
the �ner of the meshes produced the higher-�delity result. The di�culty was remedied by using
coarser meshes that were proper subsets of the �nest mesh.

xThe use of names of commercial software in this paper is for accurate reporting and does not constitute an o�cial
endorsement, either expressed or implied, of such products by the National Aeronautics and Space Administration.
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Figure 1: The 3D wing problem

Three-dimensional aerodynamic wing optimization is the �rst demonstration problem. The wing
consists of a single trapezoidal panel with a rounded tip. It is parameterized by �fteen variables.
The wing and some of the associated parameters are depicted in Figure 1. We chose to use two
independent variables|the tip chord and the tip trailing-edge setback|in the initial demonstration
to ease the visualization of the results. The objective function is the negative lift-to-drag coe�cient
ratio

f(x) = �CL=CD:

Several arti�cial constraints simulate multidisciplinary constraints:

1. A lower bound on total lift CL�S simulates a minimum payload requirement, where S is the
semispan wing planform area;

2. An upper bound on CM (pitching moment coe�cient) simulates a trim constraint;

3. An upper bound on Cl (rolling moment coe�cient) simulates a maximum bending moment
constraint.

The aerodynamic analysis code used for this study is CFL3D.ADII [39], a version of CFL3D [36]
obtained via the ADIFOR automatic di�erentiation tool [12]. The surface geometry was computed
based on the problem parameters via software that uses the RAPID technique [37]. The ADIFOR
generated analysis code includes the capability for computing the gradients. The volume mesh
and associated gradients needed for CFL3D are generated using an ADIC [13] generated version
of CSCMDO. Here we consider the case of two variable-�delity models and associated constraints,
generated by performing the CFL3D.ADII analysis on a low-�delity mesh 97 � 25 � 17 and a
high-�delity mesh 193� 49� 33.

Since the analysis is based on a multigrid solution process, the CPU time per converged function
evaluation is linear in the number of grid points, resulting in an eight-fold di�erence in execution
time between adjacent levels of �delity. For instance, on an Ultra 1 Sun workstation, a single
function and constraint evaluation on the 97�25�17 mesh takes eight minutes, and the 193�49�33
mesh analysis takes about an hour, without computing derivatives.

Initial tests were conducted with the actual function evaluations obtained by executing the
analysis software. An examination of the problem functions revealed that they exhibited benign
behavior in that the objectives and constraints were smooth and very nearly convex. Figure 2
depicts the level sets of the objective functions and active constraints obtained by performing
analyses on the 193 � 49 � 33 and 97 � 25 � 17 meshes. The shaded regions are infeasible. For
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the subsonic case under study, constraint Cl is inactive and is not depicted. Black squares mark
the solutions. Note that this problem has a favorable structure for AMMO. Although the optima
are at di�erent locations, the low-�delity and high-�delity objectives and constraints have similar
trends.

Thus, the di�culty of experimenting with the actual analyses was due to the computational
expense of obtaining function and gradient information. Because the actual functions were benign
computationally, we made a decision to expedite the numerical experimentation by using substitutes
based on data �tting to conduct the tests for this problem. The substitutes were not used in the
conventional way, i.e., to approximate the lower-�delity model. Instead, we used the substitutes for
both the high-�delity model and the low-�delity model to obtain an estimate of AMMO performance
at a small fraction of the computational expense. Two-dimensional, uniform, variation diminishing
splines (obtained with the help of the PORT [26] package) provided the best approximation to the
actual functions and were taken to represent the \true" high-�delity and low-�delity models.

An additional bene�t of using substitutes in this series of tests became apparent quickly. As
Figure 2 indicates, for this problem, the lower-�delity functions obtained on coarser meshes provide
an excellent approximation (in regards to the general trends) to those computed on �ner meshes.
Because this is the most favorable scenario for AMMO, one must also investigate cases where
the lower-�delity problem does not capture the high-�delity descent behavior well. Substitutes
provided by kriging, implemented locally, gave only a slightly less accurate approximation of the
actual functions than the splines (see Figure 3), thus retaining the favorable relationship between the
high-�delity and low-�delity descent characteristics. However, a straightforward implementation of
a cubic polynomial response surface substitute (coded locally with assistance from the RSG [27]
package) provided relatively poor models, as evidenced in Figure 4. This combination of models
served a test scenario in which the descent relationship was not as favorable.
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Figure 2: High-�delity vs. low-�delity objectives and active constraints: actual responses

The performance of AMMO frameworks was evaluated in terms of the absolute number of calls to
the high and low-�delity function and sensitivity calculations and the number of \equivalent" high-
�delity computations. The latter were easily obtained because both analysis codes use multigrid
techniques, where this metric is commonly computed.

We evaluated the performance of three AMMO frameworks, based on three underlying algo-
rithms: SQP (based on, e.g., [22]), an augmented Lagrangian approach (based on, e.g., [20]), and
MAESTRO (based on, e.g., [1]).

The performance of, for instance, SQP-based AMMO can be summarized as follows. Conven-
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Figure 3: High-�delity vs. low-�delity objectives and active constraints: level sets of kriging
approximation
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Figure 4: High-�delity vs. low-�delity objectives and active constraints: level sets of cubic polyno-
mial approximation

Full CFD analysis Kriging Spline Polynomial

Augmented Lagrangian AMF 3.0 / 2.6

SQP AMF 2.8 / 2.8 3.0 / 3.0

MAESTRO AMF 1.9 / 1.9

Table 1: Wing optimization problem: Summary of improvement factor due to the AMF in function
(�rst number) and sensitivity (second number) computations.

tional optimization, applied to a cubic polynomial substitute for the CFD analysis, required 31
high-�delity functions and 31 high-�delity sensitivities. Optimization using the SQP-based AMMO
required 4 high-�delity functions and 51 low-�delity functions, for a total of 4+51=8 = 10 3=8 equiv-
alent high-�delity functions and as many sensitivities. For a spline substitute for the CFD analysis,
conventional optimization required 21 high-�delity functions and as many sensitivities. The SQP-
based AMMO required 4 high-�delity functions, 4 high-�delity sensitivities, 28 low-�delity analyses,
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and 28 low-�delity sensitivities, or a total of 4+28=8 = 7 1=2 equivalent high-�delity functions and
as many sensitivities.

Table 1 summarizes the results for all three AMMO frameworks. Improvements in e�ciency
compared to non-AMMO versions of the same codes were consistent across the frameworks. We
note that at the time of the testing, we made an e�ort not to \�ne-tune" the AMMO codes, so as
to have a fairer test.

Even though the three frameworks performed similarly, we were able to reach a number of
conclusions about their relative applicability to engineering optimization problems. For instance,
MAESTRO-based AMMO (as well as the underlying MAESTRO algorithm) was found to be more
appropriate to bona �de MDO problems or to single-discipline optimization problems that exhibit
block structure. The nature of the problems under investigation common to many single-discipline
engineering optimization problems, dictated that the objective and constraint evaluations can be
obtained only as a result of analysis and not be available in a modular fashion, on demand. For
single-discipline problems with the objective and constraints available strictly via an analysis, SQP-
based AMMO was found to be the most appropriate of the three. Surprisingly, even though the
augmented Lagrangian-based AMMO was anticipated as the easiest to implement, the interplay
among the algorithm's components proved to be rather involved.

In summary, in the experiments with variable-resolution models, AMMO frameworks were found
to yield consistent savings in terms of high-�delity function and derivative evaluations compared to
direct optimization without model management. We believe that greater savings can be achieved,
because there is much room for improvement in the interaction among the components of the
frameworks. In particular, currently the inner subproblem of minimizing the low-�delity model is
probably being solved to an unnecessarily high degree of accuracy. This can result in a degradation
of overall e�ciency if the low-�delity computational expense is not negligible. Moreover, this can
result in trial steps that are too long insofar as they leave the region where the trends in the
corrected approximations match those of the high-�delity responses. This can lead to candidate
new designs that are not acceptable when checked using the high-�delity calculations, and we pay
the computational price for these fruitless designs. We are currently investigating this issue further.

Approximately two-fold savings were obtained for another problem, aerodynamic optimization
of a 2D airfoil with variable-resolution models. Details of both demonstrations can be found in [6].

5.2 Managing variable-�delity physics models

AMMO approaches could su�er if the lower-�delity model does not predict the trends of the higher-
�delity model adequately. In this case, AMMO will take only a short step using the low-�delity
calculations before requiring recourse to the high-�delity calculations, which, in e�ect, means op-
timization with high-�delity models. Thus, in the worst case, the AMMO approach reverts to
conventional optimization with the high-�delity model.

We would anticipate seeing this worst-case scenario in variable-�delity physics models. Although
one might expect to see similar global trends, one might also expect drastically di�erent behavior
in regions where, say, in aerodynamics, viscous and shear e�ects become active. In such regions,
the low-�delity physics models not only fail to predict the function information accurately in a
quantitative sense, but they also exhibit di�erent trends.

To test the limitations of the AMMO approach, we have considered aerodynamic optimization
of a multi-element airfoil designed to operate in transonic conditions [42]. The transonic free-stream
Mach number and the multi-element nature of the airfoil makes inclusion of the viscous e�ects very
important for obtaining physically correct results. This is con�rmed in Figure 5, which depicts the
Mach number in the 
ow for the high-�delity and low-�delity models for this problem, where the
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boundary and shear layers are clearly visible in the viscous case. To capture the viscous e�ects, the
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Figure 5: Mach number contours for viscous vs. inviscid model
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Figure 6: Drag coe�cient contours of the viscous and inviscid models

governing equations of the high-�delity model are the Reynolds-averaged Navier-Stokes (RANS)
equations,

A
@Q

@t
+

I
@


~Fi � n̂ dl�

I
@


~Fv � n̂ dl = 0;

where ~Fi and ~Fv are the inviscid and viscous 
uxes, respectively. Detailed description of the
equation components can be found in [8, 9]. The low-�delity model is represented by the Euler
equations. The analysis in both the RANS and Euler modes is provided by the 
ow solver FUN2D,
an unstructured mesh 
ow solver [8]. The sensitivity derivatives are computed via a hand-coded
adjoint approach [9].
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The mesh for the viscous model consists of 10449 nodes and 20900 triangles. The mesh for
the inviscid model comprises 1947 nodes and 3896 triangles. The free-stream Mach number is
M1 = 0:75, the Reynolds number is Re = 9� 106, and the angle of attack is � = 1�.

Test hi-� eval lo-� eval total t factor

PORT with hi-� analyses, 2 var 14/13 � 12 hrs

AMMO, 2 var 3/3 19/9 � 2:41hrs � 5

PORT with hi-� analyses, 84 var 19/19 � 35 hrs

AMMO, 84 var 4/4 23/8 � 7:2hrs � 5

Table 2: AMMO performance vs PORT

Because of the importance of the viscous e�ects in this problem, the use of the inviscid equations
for the low-�delity model should present an important test for the present approach.

The objective of this problem is to minimize the drag coe�cient by adjusting the global angle
of attack and the y-displacement of the 
ap. The �rst test case is restricted to two design variables
to enable visualization. The baseline case for both models was constructed at � = 1� and zero
y-displacement of the 
ap.

Figure 6 depicts the level sets of the drag coe�cient for the viscous and inviscid models. The
solution for each problem is marked with a circle. The problem manifests the most adverse situation:
not only is the low-�delity model not a good approximation of the high-�delity model but, in fact,
the descent trends in the two models are reversed. Thus the problem provides a good test of the
methodology.

The computational expense necessary to calculate functions and derivatives in the viscous case is
considerably greater than that for the inviscid model. We conducted our experiments on an SGITM

OriginTM 2000 workstation with four MIPS RISC R10000 processors. One low-�delity analysis
took approximately 23 seconds and one low-�delity sensitivity analysis took between 70 and 100
seconds. In contrast, one high-�delity analysis took approximately 21 minutes and one high-�delity
sensitivity analysis took between 21 and 42 minutes to compute. The measures were taken in CPU
time. Thus, the time per low-�delity evaluation may be considered negligible compared to that
required for a high-�delity evaluation.

The problem with two variables was �rst solved with single-�delity models alone using [26], in
order to obtain a baseline number of function evaluations or iterations to �nd an optimum. The
problems were then solved with AMMO. Again, for each experiment, the performance of AMMO
was evaluated in terms of the absolute number of calls to the high and low-�delity function and
sensitivity calculations. Because the time for low-�delity computations was negligible in compar-
ison to the high-�delity computations, we estimated the savings strictly in terms of high-�delity
evaluations.

Because the ability to handle high-dimensional problems is an important attribute of �rst-order
AMMO frameworks and because some numerical e�ects could be an artifact of low dimensionality,
the experiments were repeated for the problems with 84 variables. The additional variables were
represented by parameters describing the shape of the airfoil. The time-per-analysis for the 84-
variable case was approximately the same as for the two-variables case. However, the time-per-
sensitivity increased to nearly two hours per sensitivity calculation. Table 2 summarizes the number
of function (�rst number) and derivative (second number) computations expended in PORT and
in AMMO for both problem formulations.

Given the dissimilarity between the high-�delity and low-�delity model, we were initially sur-

11



1st Int Workshop on Surrogate Modelling and Space Mapping for Eng Opt, 11/16{19/00, TDU

prised to �nd that the AMMO performed well: it consistently yielded approximately �ve-fold
savings in terms of high-�delity computations. Further analysis of the results revealed that the
savings were not so surprising after all. For our combination of models, the �-correction worked
extremely well. This is illustrated in Figure 7 for the two-variable case. The plot on the left shows
the level sets of the high-�delity model with the solution. The plot on the right depicts the level
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Figure 7: Drag coe�cient level sets of the viscous and corrected inviscid models

sets of the low-�delity model �-corrected at the initial point. The initial point is marked by a
square. Here we have applied the correction to the entire region to visualize the e�ect of the cor-
rection on the low-�delity function. The �gure clearly shows that the correction, using the function
and derivative information at the anchor point (at this iteration, the initial point), reversed the
trend of the low-�delity model, allowing the optimizer to �nd the next iterate in the left upper
corner of the plot, marked by a circle. Similar analysis can be conducted for all iterations. In
fact, AMMO located the solution (� = 1:6305�, 
ap y-displacement = �0:0048) of the high-�delity
problem already at the next iteration. The high-�delity drag coe�cient at the initial point was

Cinitial
D

= 0:0171, the high-�delity drag coe�cient at the solution was C�nal
D

= 0:0148, a decrease
of approximately 13:45%. The drag reduction in the 84-variable case was approximately 25%.
Details of the two-variable demonstrations may be found in [7].

6 First-order vs zeroth-order model management

The �rst-order model management framework uses design sensitivities to good e�ect. However,
one could alternatively consider a model management scheme based purely on response (objective
and constraint) values, without recourse to sensitivities|a zeroth-order approach, as in Response
Surface Methodology (see, for instance, [15, 28]). We brie
y compare �rst-order and zeroth-order
model management schemes.

In classical Response Surface Methodology, one constructs approximations by building a low-
order (typically, a quadratic) polynomial via regression on values of the high-�delity responses.
Modern elaborations include kriging and spline approximations constructed from high-�delity data.
Given such a model, one applies optimization to it. At some point the model is updated with new
high-�delity information, and the process repeats.
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In the setting of model management, one must verify that such a zeroth-order scheme yields
improvement in the true responses, just as in the �rst-order approach. In the �rst-order approach,
the �rst-order consistency condition guarantees that if necessary, we can insure improvement using
the approximation by taking very small steps. However, no such guarantee obtains in a zeroth-order
model management scheme. Instead, one may have to revert to optimization on the high-�delity
model in order to make progress.

In addition, since one does not have sensitivity estimates, one cannot enforce the usual sorts
of su�cient decrease criteria (e.g., the Armijo{Goldstein{Wolfe conditions in line-search methods
for unconstrained minimization). The absence of information about sensitivities restricts the class
of optimization algorithms one can use if one wishes to be assured of convergence of the overall
process.

As noted previously, one limitation of zeroth-order approximation is the di�culty of constructing
suitably useful approximations when there are more than a relatively small number of design
variables (say, 20{40). In general, considerable numbers of samples of the high-�delity response
are required to adequately capture the trends in even relatively simple responses and even for a
relatively small number of variables.

Moreover, there are subtleties with sampling that arise in problems of engineering interest.
Imagine that the design variables are shape parameters for an airfoil, say, spline knots, as in the
examples discussed previously. Our goal is to approximate (and minimize) transonic drag. Suppose
we apply conventional experimental design techniques to sampling the design space in order to
collect data for an approximation of the true drag. There is no guarantee that these sampled
designs will correspond to physically meaningful airfoils. Instead, we will frequently compute the
drag at values of the design variables that correspond to airfoils with bumps and divots and very
bad aerodynamic behavior. Thus, we will build our approximation from responses at bad designs.
These values will not be particularly useful in predicting the behavior of the smoother, desirable
designs, because of the signi�cant nonlinearity of the dependence of drag on airfoil shape. If we try
to ameliorate this problem in sampling by con�ning our sampling to the span of some set of nice
shapes|a reduced basis approach|we may unduly limit our design degrees of freedom.

One can use, say, variable-accuracy and variable-resolution models as predictors for promising
designs in a zeroth-order approach. However, in the variable-�delity physics example discussed in
Section 5.2, the inviscid approximation has entirely the wrong trend compared to the true, viscous
calculation, as Figure 6 makes clear. It cannot be used without some manner of correction as a
predictor in a zeroth-order model management scheme.

7 Concluding remarks

Sensitivity information is becoming increasingly available with analysis codes. Automatic di�eren-
tiation techniques make it relatively simple to generate sensitivity information. Appreciation of the
utility of sensitivities in design and optimization have also led to a more widespread implementa-
tion of e�cient adjoint techniques. With derivatives more readily available, and because sensitivity
information is so useful in constructing approximations for the purposes of optimization, we believe
the �rst-order framework we have described will prove very helpful.

The results obtained in our studies of AMMO and variable-�delity models are promising. We
have observed signi�cant computational savings over conventional optimization, in terms of high-
�delity simulations. Despite the sometimes signi�cant dissimilarity between high- and low-�delity
models, we were able to capture the descent behavior of the high-�delity model with the assistance
of the �rst-order correction. When the models are greatly dissimilar, �rst-order information appears
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indispensable in obtaining reasonable descent directions. The �rst-order corrected approximation
then leads to e�cient optimization.

Given these results, we are cautiously optimistic about several much larger single-discipline test
cases, multidisciplinary optimization cases, and a variety of alternative modeling options that are
currently under investigation.
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